prython is a novel IDE that allows you to code in R or Python (you can even use both within the same project) by connecting panels in a canvas. It allows you to organise your code, perform experiments that run with one click, and visualise your plots+dataframes next to the panel that created them. Tired of remembering which lines need to commented out to test something? Or do you just want to organise your code better? Currently available for Windows, and runs with your local R/Python kernels.

Download now

Designed for data scientists and data analysts

Data professionals need to experiment, visualise their data, and separate their code into very different areas such as input processing, model training, prediction, etc. prython proposes a new paradigm to help them do that.


Multiple output connections

Wondering how you can test different models using the same data? Here we are using a random forest to identify the three top features. We then test two models using these top 3: an SVM and a logistic regression model. Everything can be ran with a single click, and results will appear in each panel

Multiple input connections

Here we are bringing three results (from three separate panels) into this panel. Every object created in them will be available in this last one. The execution order is marked with a number.

Three running modes

You can run only one panel, all panels that consume the outputs of this panel, or all panels that act as inputs to this panel

Plots and dataframes

For each panel, you can see the plots and dataframes generated in it. Works will both R standard plots/ggplot , and Python matplotlib/seaborn

Markers

You can add markers that can be clicked to redirect you to any part of the project

Attach consoles

For each panel, everything in the environment up to when it ran is saved. It can then be used by attaching a console and running Python/R line by line.

Linked panels

You can create panels that replicate the content of other panels. For example, if we have two datasets, and we want to run the same model (lower left panel) over both of them. We create a replica of the model (lower right panel) but the input will be different (check the green dotted line). Every change done on the left panel will get reflected on the right one. It is meant for testing how different inputs alter the results

Imports and error detection

Errors are flagged automatically (LEFT), and external import scripts from either R/Python are loaded (RIGHT)

Dataframe mode

Press F9 to quickly see all Python and R dataframes together

Code editor

You can code using the panel or a larger editor with live highlighting

Extra tools

You can add floating notes, brackets, and frames to identify specific parts of your project

Process tracker

You can monitor each running process, as well as the CPU and Memory usage

Execution time

You can see how long each panel takes, saving you from adding timers to identify bottlenecks

Freeze logs

For each panel, you can save a snapshot of the result, which can be used to check the impact of changing your code. Here we had an original R vector, which we then transformed.

Hide/Show panels

Panels can be hidden to run your code without them. Here we are blocking/hiding the upper-right one.

Quick link to Excel

You can click on any table to load the results automatically in Microsoft Excel

Screenshots


Autocomplete + code highlighting

Python and R coding, fast!


Deep Learning in Keras and scikit-learn

Here we are testing two deep learning models (left) and a logistic regression one in sklearn (right) on the famous iris dataset. The three of them can be executed with just one click and easily compared within the same screen


Multiple plots in R

Displaying and managing multiple plots never got easier. Here we have a couple of standard plots and ggplots in R


Visualizing changes to dataframes

Here we are applying a series of filters to a data-frame in R. Every panel shows the status of the data-frame after each panel was executed

Download now!

Windows Version 1.20 Dec build

Contact us

Send us an email to info@prython.com

Or follow us on @prython